

JOURNAL OF INNOVATIONS IN SCIENCE EDUCATION (JISE)

A PUBLICATION OF ASSOCIATION OF
SCIENCE EDUCATORS ANAMBRA STATE (ASEA)

Vol. 1(1); 2025

PRINT ISSN: 3092-9180 E-ISSN: 3115-4379

Editor in-Chief
PROF. JOSEPHINE N. OKOLI

***JOURNAL OF INNOVATIONS IN SCIENCE EDUCATION
(JISE)
Vol. 1(1); 2025***

**A PUBLICATION OF ASSOCIATION OF SCIENCE
EDUCATORS ANAMBRA (ASEA)**

***JOURNAL OF INNOVATIONS
IN SCIENCE EDUCATION
(JISE)
Vol. 1 (1); 2025***

***JOURNAL OF INNOVATIONS IN SCIENCE EDUCATION
(JISE)
Vol. 1(1); 2025***

© (JISE)

Print ISSN: 3092-9180

E- ISSN: 3115-4379

Published in July, 2025.

All right reserved

No part of this journal should be reproduced, stored in a retrieval system or transmitted in any form or by any means in whole or in part without the prior written approval of the copyright owner(s) except in the internet

Printed in Nigeria in the year 2025 by:

Love Isaac Consultancy Services

No 1 Etolue Street, Ifite Awka, Anambra State, Nigeria

+234-803-549-6787, +234-803-757-7391

***JOURNAL OF INNOVATIONS IN SCIENCE EDUCATION
(JISE)
Vol. 1(1); 2025***

EDITORIAL BOARD

Editor-in-Chief

Prof. Josephine N. Okoli

Editors / Reviewers

Prof. Chibuegwu V. Nnaka

Prof. Moses O. Onyesolu

Dr. Moses John Billy

Dr. John Bosco O.C. Okekeokosisi

Dr. Esther B. Enaregha

Dr. Omoyeni O. Emmanuel

Dr. Celestine Njoku

Dr. James C. Ogeke

Consulting Editors

Prof. Ebele C. Okigbo Nnamdi Azikiwe University, Awka,
Anambra State.

Prof. Marcellinus C. Anaekwe National Open University of Nigeria

Dr. Peter I.I. Ikoku Nwafor Orizu College of Education
Nsugbe, Anambra State.

***JOURNAL OF INNOVATIONS IN SCIENCE EDUCATION
(JISE)
Vol. 1(1); 2025***

EDITORIAL

Journal of Innovations in Science Education (JISE) is a Publication of Association of Science Educators Anambra (ASEA). It is publishable both online and offline. The publication is twice a year. It embraces only on science education and innovative ideas. JIES provide an avenue for dissemination of research findings, innovative ideas and practices between researchers, science educators and policy makers in the form of original research, book review, theoretical and conceptual papers which will serve as an important reference for the advancement of teaching, learning and research in the field of science education.

We are grateful to the contributors and hope that our readers will enjoy reading these contributions.

**Prof. Josephine N. Okoli
Editor-in-Chief**

**JOURNAL OF INNOVATIONS IN SCIENCE EDUCATION
(JISE)
Vol. 1(1); 2025**

TABLE OF CONTENTS

Strategic Development of Entrepreneurial Skills among Undergraduates in Science and Technology Education for Poverty Alleviation in Nigeria Udeze Jireh Chukwuma	1
Effect of Motivation-Oriented Teaching Strategy on Students' Achievement in Mathematics in Aba Education Zone Njoku, Celestine (Ph.D), EmekaStandhope I	20
Effect of Blended Learning in Post COVID 19 Era on the Academic Achievement of Biology Students in Secondary Schools in Rivers State Edache-Abah, Odachi Felicia (Ph.D), Umoru, Susan Ene (Ph.D)	31
Teachers' Professionalism as Determinants of Their Utilization of Instructional Materials in Teaching Mathematics in Calabar Metropolis, Nigeria Ekpenyong Effiong Ibok (Ph.D), Raymond Ogbebe Ogar (Ph.D), Mercy Tawo Bessong, Inyang Inyang Nelson(Ph,D)	44
Influence of Innovative Teaching Methods on Chemistry Students' Achievement in Secondary Schools in Awka South Local Government Area Anambra State Nigeria Franklin Nnanna Ibe Peter I.I. Ikokwu	60
Energy Consumption-Based Ransomware Detection on Android Devices Iyamah B. E, Malasowe B. O., Ojie D. V., Monye S. N.	73
Socio Cultural Implications on Female Participation in Sport in the University of Calabar, Calabar, Cross River State, Nigeria Ahueansebhor E., Eyam D.E.	89
Smart Room Light System with Hand Gesture Control to Aid the Blind Using Deep Learning Omopariola Adebola Victor, Ogbonna Chukwudi Nnanna, Adeleke Blessing Adegbola, Falana Moses Oluwaseun	107

SMART ROOM LIGHT SYSTEM WITH HAND GESTURE CONTROL TO AID THE BLIND USING DEEP LEARNING

¹Omopariola Adebola Victor, ²Ogbonna Chukwudi Nnanna, ³Adeleke Blessing Adegbola, ⁴Falana Moses Oluwaseun

¹omopariolaa@veritas.edu.ng, ²ogbonnac@veritas.edu.ng, ³lekeblessing@yahoo.com,
⁴falanamoses@gmail.com

¹ORCID ID - 0000-0002-1234-3911, ²ORCID ID - 0000-0002-8655-5001, ³ORCID ID - 0009-0006-0076-5777, ⁴ORCID ID - 0009-0001-7137-841X

^{1, 2, 4}Department of Computer Science, ³Department of Cyber security

^{1, 2, 4}Veritas University, Abuja, ³Africa Centre of Excellence on Technology Enhanced Learning

Abstract

The increasing adoption of smart home technologies necessitates the development of intuitive and user-friendly interfaces to enhance user experience and accessibility. This project focuses on the design and implementation of a smart room light system controlled by hand gestures, utilizing computer vision and a standard camera. By leveraging advanced machine learning algorithms for real-time gesture recognition, the system aims to provide an efficient, cost-effective, and natural interface for controlling lighting in smart home environments. The proposed system addresses key challenges identified in existing literature, such as the need for high accuracy, adaptability to diverse lighting conditions, and seamless integration with existing smart home infrastructure. This innovative approach not only enhances user interactivity and convenience but also promotes energy efficiency and accessibility, particularly benefiting individuals with disabilities or limited mobility. Through extensive testing and validation, the smart room light system demonstrates significant potential to transform user interaction within smart homes, paving the way for more intuitive and inclusive smart home solutions. However, the system has limitations, including potential difficulties in recognizing gestures under extremely low light conditions and the need for further optimization to handle a wider range of gestures.

Keywords: Smart Room light system, Smart Homes, Machine Learning, Computer Vision, Hand Gesture Controls.

Introduction

The evolution of technology has consistently aimed at enhancing human convenience and safety, with smart homes being a prominent advancement. Smart home technologies automate and control household appliances, lighting, and security through various interfaces like smartphones, voice commands, and gesture control. Integrating gesture control into smart home systems offers an intuitive method for managing home environments, particularly lighting, which is essential for residential comfort and efficiency (Rautaray & Agrawal, 2015).

Recent advancements in machine learning and artificial intelligence have further improved gesture recognition systems. Techniques like convolutional neural networks (CNNs) and deep learning algorithms enable the processing of complex visual data, allowing systems to recognize a wide range of gestures with high accuracy (Goodfellow et al., 2016). The goal of this project is to design and implement a smart room light system using hand gesture control to improve user experience and energy efficiency, leveraging these technological advancements to create a reliable and intuitive interface. (Sathiyanarayanan & Rajini, 2017; Li & Sun, 2020; Kumar et al., 2021; Vigneshwaran et al., 2019).

Smart home technologies have evolved significantly over the past few decades, transforming from basic automation systems to sophisticated, interconnected networks of devices that enhance comfort, security, and energy efficiency in residential settings. The concept of smart homes, where devices communicate and operate autonomously, dates back to the early 20th century with the advent of household appliances. However, the modern smart home as we know it began to take shape in the late 20th and early 21st centuries with the integration of internet connectivity and advanced computing capabilities (Aldrich, 2003).

Smart homes rely on various components and technologies that work together to create a seamless and efficient living environment. Key components include sensors, actuators, controllers, and communication protocols.

Sensors and Actuators: Sensors detect changes in the environment, such as temperature, motion, or light levels, while actuators perform actions based on sensor inputs, like adjusting lighting or temperature (Kim et al., 2017).

- i. Controllers: Centralized or distributed controllers manage the interaction between sensors and actuators, often using sophisticated algorithms to optimize performance and energy use (Ghaffarian Hoseini et al., 2013).
- ii. Communication Protocols: These include Wi-Fi, Zigbee, Z-Wave, and Bluetooth, which facilitate communication between devices. The choice of protocol can affect the range, power consumption, and reliability of the smart home network (Sicari et al., 2015).

Smart home technologies offer numerous benefits, making them increasingly popular among consumers:

- i. Convenience: Automated systems can perform routine tasks, such as turning lights on or off, adjusting thermostats, and managing security systems, which enhances daily living convenience (Balta-Ozkan et al., 2013).
- ii. Security: Smart security systems, including cameras, motion detectors, and smart locks, provide enhanced protection against intrusions and allow homeowners to monitor their properties remotely (Zhou et al., 2016).
- iii. Energy Efficiency: By optimizing the use of household appliances and systems, smart homes can significantly reduce energy consumption and costs. For instance, smart thermostats learn users' schedules and adjust heating and cooling accordingly (Yang et al., 2014).

Gesture recognition technology has significantly evolved since its early applications in the mid20th century. Initially developed for military and industrial uses, these systems employed basic image processing techniques to recognize simple patterns and movements (Rautaray & Agrawal, 2015). The field advanced with the development of more sophisticated hardware and algorithms, enabling more complex and accurate gesture recognition.

Statement of the Problem

Despite advancements in smart home technologies, there is a significant need for a more intuitive and user-friendly lighting control system that utilizes hand gesture recognition. Current lighting control systems often rely on physical switches, remote controls, or voice commands, which may not be convenient or accessible for all users,

particularly those with mobility impairments or speech difficulties. Additionally, these systems may not offer the level of interaction and engagement that hand gesture control can provide.

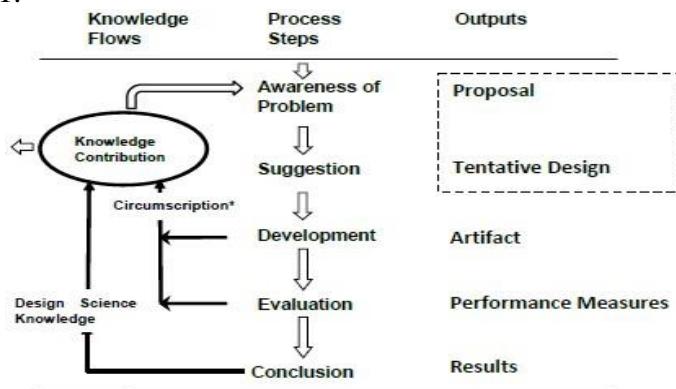
Research Questions

The following research question guided the study;

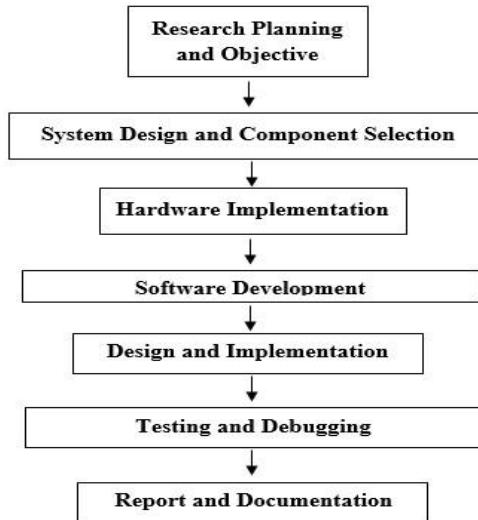
1. How can an intuitive hand gesture recognition system be designed and optimized to ensure accurate and responsive control of room lighting
2. What are the best machine learning techniques and algorithms for interpreting hand gestures to control room lighting effectively

Aim and Objectives

The aim of this research is to design and implement a smart room light system with hand gesture control to enhance user convenience, accessibility, and energy efficiency.


Objectives

1. To design an intuitive hand gesture recognition system that can accurately interpret a variety of hand gestures for controlling room lights. (This is the core functionality)
2. To integrate a camera into the system to capture hand gestures and provide precise data for gesture recognition. (Provides accurate data for the core function)
3. To develop and implement the gesture recognition algorithm using machine learning techniques to ensure high accuracy and responsiveness in different lighting conditions.
4. To design the smart light control system incorporating components such as an Arduino microcontroller, camera, and communication modules to control the light based on recognized gestures.


Materials and Method

The study encompasses the design and implementation of a smart room light system with hand gesture control, focusing on creating an intuitive and energy-efficient lighting control interface for residential environments. The study involves selecting and integrating appropriate hardware components for the smart room light system, including cameras, microcontrollers (such as Arduino), communication modules, and

LED lighting fixtures. The project plan and method were meticulously executed, breaking down the smart room light control system design by its components, construction, design considerations, and requirements. It provides a detailed discussion of the design and implementation of the system, following the steps illustrated in Figure 1.

Figure 1. DSR diagram (source; <https://www.researchgate.net/figure/Design-ScienceResearch-Process->)

Fig. 2. Sequence diagram

The project on designing and implementing a smart room light control system using hand gestures involves several critical stages to ensure successful development and deployment.

System Design and Component Selection

The smart room light system with hand gesture control is designed at this stage. Additionally, the choice and acquisition of relevant parts, such as LED lights and Microcontroller, are made.

System Design

The smart room light control system using hand gestures is designed to enhance user convenience and energy efficiency. The system architecture consists of three main components: the gesture recognition module, the microcontroller unit, and the lighting control module.

- Gesture Recognition Module: This module captures hand gestures using a computer vision approach.

- Microcontroller Unit: The Arduino Uno R3 serves as the central processing unit for the system.
- Lighting Control Module: This module includes LEDs representing the room lights in the model.

Component Selection and Justification

- **Arduino Uno R3:**

Justification: The Arduino Uno R3 is a popular microcontroller known for its affordability, ease of programming, and wide community support.

LEDs:

Justification: LEDs were selected to represent room lights in the model due to their low cost, energy efficiency, and ease of control via the Arduino.

Computer Vision System (Camera and Software):

Justification: Implementing computer vision for gesture recognition was chosen over alternatives like gyroscopes and accelerometers because it offers a more natural and intuitive user interface. **Power Supply:**

- **Communication Interfaces:**

Justification: Communication interfaces, such as USB or wireless modules, can be integrated for ease of programming and potential remote control capabilities. These interfaces allow for easy updates and modifications to the system, enhancing flexibility and scalability for future improvements.

Hardware Implementation

In order to build the smart room light system with hand gesture control, the chosen components must be physically put together and connected.

Software Development

During this phase, software development is done to put the essential logic and algorithms in place to make the system work.

Design and Implementation

Creating the system design and putting it into practice by putting the hardware parts together, wiring up the circuits, and writing the software.

Testing and Validation

This phase involves thorough system testing and validation after the hardware and software components have been integrated.

Results

Identifying the components utilized and how they integrate into the system architecture. It also covers the hardware requirements and the specifications for circuit construction. The tasks involved in the design and development of the smart room light system with hand gesture control include:

- Design considerations.
- Draw the block diagram.
- Identify the most suitable computer vision framework.
- Identify the required camera and processing hardware.
- Draw the overall circuit diagram.

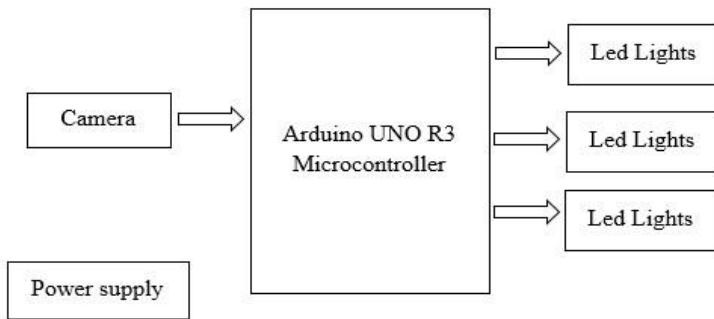
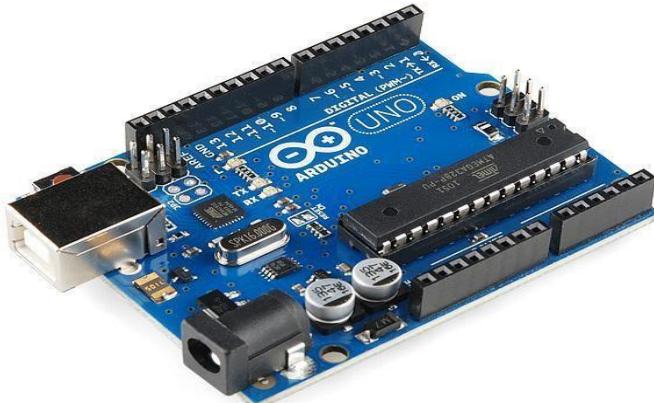

The initial step was to conduct a design consideration, where an analysis of the various components was performed and decisions were made regarding the selection of the appropriate parts to use.

Table 1: Specification of Components

COMPONENTS	NUMBER	SPECS
Microcontroller	1	Arduino Uno R3 ATmega328
Project Board GL-12(bread board)	1	8.2cm x 6.2 cm
Connecting Wire		Jumper Wires
LED light	5	5mm bright white
LED light	1	5mm Red
Resistor	6	220KΩ 1/4W resistor

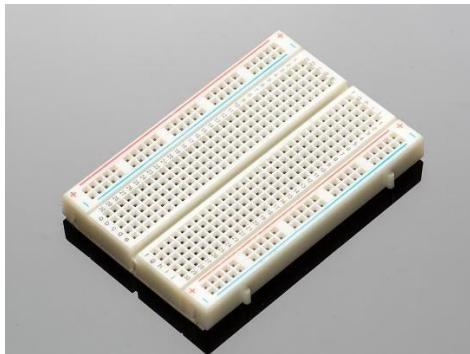
Block Diagram of Proposed System

The subsequent phase of the design process involved generating a visual representation of the proposed system through the creation of a block diagram, as depicted below.


Figure 3. System block diagram

System Operation

1. Initialize the System
2. Camera Setup
3. Frame Processing
4. Hand Detection
5. Gesture Recognition
6. Control Commands
7. Serial Communication
8. Visual Feedback
9. Loop and Termination


Components for the system

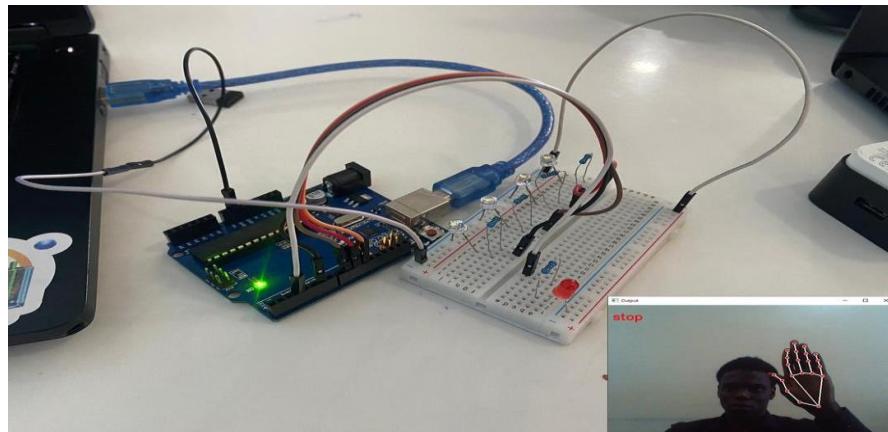
Arduino UNO Microcontroller: In this design, the researchers opted for a microcontroller suited for implementation. Arduino, an open-source programmable board, was selected for its versatility. It comes with an Integrated Development Environment (IDE), enabling users to write and execute code to interpret inputs (such as sensors, buttons, or messages) and produce outputs (such as activating motors or turning on lights).

Figure 4. Arduino Uno Microcontroller (Source: <https://hub360.com.ng/product/arduino-uno-r3/>)

Breadboard: A breadboard is a fundamental tool used in electronics prototyping and circuit design. Breadboards are used to quickly and easily create temporary circuits without the need for soldering. They allow components to be inserted and connected together to test circuit designs and experiment with different configurations.

Figure 5. Breadboard (Source: core-electronics.com.au)

Jumper Wires: *Jumper wires are essential components used in electronics prototyping and circuit building. Jumper wires are used to create electrical connections between components on a breadboard, PCB (Printed Circuit Board), or other electronic circuits. They allow signals, power, and ground connections to be easily routed between different points in a circuit. Jumper wires typically consist of insulated wires with connectors at each end.*


Figure 6. Jumper Wires (Source: www.nettigo.eu)

Software Used

Computer Vision and Hand Gesture Recognition: Computer vision is a field of artificial intelligence that enables computers to interpret and understand the visual world. For hand gesture recognition, the library can preprocess video input by converting frames to the RGB color space, flipping the images for consistency, and extracting relevant features.

Arduino IDE : The Arduino IDE is an open-source software developed by Arduino.cc that is primarily used for writing, compiling, and uploading code to almost all Arduino Modules. The main code, also known as a sketch, created on the IDE platform will eventually generate a Hex File, which is then transferred and uploaded into the board's controller. It supports the C and C++ programming languages (Aqeel, 2018).

PySerial: PySerial is a Python library that encapsulates access to serial ports, providing a simple interface for communicating with hardware devices via serial connections.

Figure 7. Smart Room light control system OFF

Functionality Testing: The smart room light control system utilizes hand gesture recognition technology to enable users to control room lighting through gestures.

Discussions

The contribution of the smart room light system with hand gesture control lies in its ability to provide intuitive, efficient, and accessible lighting management, leading to enhanced user convenience and accessibility. This technology offers several advantages over traditional lighting control systems, such as:

Enhanced Precision: The use of computer vision algorithms enables the system to accurately recognize specific hand gestures. This precise detection allows for reliable control of the lighting system, reducing the chances of misinterpretation and ensuring accurate execution of user commands.

Real-time Control: The continuous video monitoring and processing by the camera and computer vision system provide real-time gesture recognition. This allows for immediate response to user gestures, facilitating quick adjustments to the lighting environment as needed, thereby enhancing user experience and satisfaction.

Adaptability: The gesture-controlled lighting system can adapt to various settings and environments. It can be customized to recognize a range of gestures tailored to specific user needs or integrated with existing home automation systems. This adaptability increases its applicability in diverse scenarios, from residential homes to public facilities.

Accessibility: By eliminating the need for physical switches, the system significantly improves accessibility for individuals with mobility issues or disabilities. This touchless control method offers a more inclusive and user-friendly interface, making it easier for everyone to manage room lighting without physical effort.

Integration: The system's ability to integrate with existing smart home ecosystems enhances its overall functionality. By providing an intuitive interface for lighting control, it complements other smart devices, contributing to a cohesive and advanced home automation experience.

Recommendations

The study recommends that;

1. Robust Testing and Validation: Prior to deployment, extensive testing should be conducted to ensure the system's reliability and accuracy. This testing should cover various lighting conditions, different hand gestures, and diverse user scenarios to validate its effectiveness across a range of situations. Testing should also include scenarios with multiple users and varying ambient light levels to ensure consistent performance.
2. Integration with Smart Home Ecosystems: To maximize the system's efficiency, it is recommended to integrate it with existing smart home ecosystems, such as Google Home, Amazon Alexa, or Apple HomeKit. This integration would allow for seamless control of the lighting system alongside other smart devices, enhancing the overall user experience and providing a unified interface for home automation.
3. Redundancy and Fail-Safe Mechanisms: Implementing redundant components and failsafe mechanisms is crucial to ensure system reliability. Backup cameras or additional sensors can be incorporated to provide redundancy in case of component failure. Fail-safe protocols should be established to handle system malfunctions, such as reverting to manual control in the event of a system error.
4. User Training and Customization: Providing user training and customization options is essential for maximizing the system's effectiveness. Users should be educated on how to perform the gestures accurately, and the system should offer customization options to tailor the gestures to individual preferences and needs. This can improve user satisfaction and ensure a smooth interaction with the system.
5. Privacy and Security Measures: Given the continuous video monitoring, it is important to implement robust privacy and security measures. Data encryption, secure storage, and strict access controls should be employed to protect user data. Additionally, informing users about data usage and obtaining their consent is vital to address privacy concerns.
6. Regular Maintenance and Updates: Regular maintenance and software updates are necessary to keep the system running smoothly and to incorporate new features or improvements. Periodic checks of the hardware components and updates to the computer vision algorithms can help maintain high accuracy and reliability over time.
7. Adaptability to Different Environments: The system should be designed to adapt to different environments and user needs. This includes ensuring compatibility with various lighting types (e.g., LED, fluorescent) and configurations. Additionally, the

system should be adjustable to work in different room sizes and layouts, providing flexibility for various installation scenarios.

Conclusion

This system combines the use of computer vision and a camera to detect hand gestures for controlling room lighting. The primary goal is to provide an intuitive and efficient way to manage lighting without physical switches, enhancing convenience and accessibility. The camera captures real-time video of hand movements, which are processed by computer vision algorithms to recognize specific gestures. These gestures then control the lighting system via a microcontroller, allowing actions such as turning lights on/off or adjusting brightness.

One observation regarding this design is its potential to improve lighting control capabilities in various settings. By using computer vision for gesture recognition, the system adapts to different environments and offers effective lighting management where conventional methods may be inconvenient. For example, it can be beneficial in homes for the elderly or disabled, providing easier control without physical contact, and in public facilities where touchless interaction is preferred for hygiene reasons.

Moreover, the gesture-controlled lighting system can integrate with existing home automation systems, enhancing their overall functionality. By providing an intuitive and accessible interface, it can improve user experience and expand the capabilities of smart home ecosystems.

References

AECOM & OFGEM (2011) Energy demand research project: final analysis. AECOM Limited, St. Albans.

AlAbdulkarim, L., Lukszo, Z., & Fens, T. (2012). Acceptance of privacy-sensitive technologies: smart metering case in The Netherlands. Third international engineering systems symposium CESUN 2012, Delft University of Technology, 18–20 June 2012

Aldrich, F.K. (2003) Smart homes: past, present and future. In: Harper R (ed) Inside the smart home. Springer, London, 17–39

Aldrich, F. K. (2003). Smart Homes: Past, Present, and Future. In Inside the Smart Home. Springer, 17-39.

Alkar, A. Z., & Buhur, U. (2005). Internet Based Wireless Home Automation System for Multifunctional Devices. *IEEE Trans. on Consum. Electron*, 51(4); 1169–1174.

Allcott, H. (2011). Rethinking real-time electricity pricing. *Resour Energy Econ*, 33(4); 820–842

Axsen, J., Kurani, K.S. (2012). Social influence, consumer behavior, and low-carbon energy transitions. *Annu Rev Environ Resour*, 37(1); 311–340

Baillie, L., Benyon, D. (2008). Place and technology in the home. *Comput Support Coop Work*, 17; 227–256

Bainbridge, L. (1983). Ironies of automation. *Automatica*, 19(6); 775–779

Balta-Ozkan, N., Davidson, R., Bicket, M. & Whitmarsh, L. (2013). Social barriers to the adoption of smart homes. *Energy Policy*. doi: [10.1016/j.enpol.2013.08.043](https://doi.org/10.1016/j.enpol.2013.08.043)

Balta-Ozkan, N., Davidson, R., Bicket, M., & Whitmarsh, L. (2013). Social barriers to the adoption of smart homes. *Energy Policy*, 63, 363-374. <https://doi.org/10.1016/j.enpol.2013.08.043>

Bassi, A., Bauer, M., Fiedler, M., Kramp, T., van Kranenburg, R., Lange, S., & Meissner, S. (2013). Enabling things to talk: Designing IoT solutions with the IoT architectural reference model. Springer.

Berg, C. (1994). A gendered socio-technical construction: the smart house. In: Cockburn C, Furst-Dilic R (eds) Bringing technology home: gender and technology in a changing Europe. Open University Press, Buckingham

Bierhoff, I., van Berlo, A., Abascal, J., Allen, B., Civit, A., Fellbaum, K., Kemppainen, E., Bitterman, N., Freitas, D., Kristiansson, K (2007). Smart home environment. COST Brussels

JOURNAL OF INNOVATIONS IN SCIENCE EDUCATION (JISE)
Vol. 1(1); 2025

Cook, D. J., Augusto, J. C., & Jakkula, V. R. (2012). Ambient intelligence: Technologies, applications, and opportunities. *Pervasive and Mobile Computing*, 5(4); 277-298. <https://doi.org/10.1016/j.pmcj.2009.04.001>

Coughlan, J. M., & Manduchi, R. (2007). An outdoor navigation system for blind pedestrians based on computer vision. *Assistive Technology Research Series*, 17, 279-286. <https://doi.org/10.3233/978-1-60750-017-9-279>

Chris Kiefer, N. C. & Fitzpatrick, G (2009). Controlling Music Software with Hand Movement Using A Computer Vision and Machine Learning Approach.

Dohr, A., Modre-Opsrian, R., Drobics, M., Hayn, D. & Schreier, G. (2010) The internet of things for ambient assisted living. In: *Information Technology: New Generations (ITNG)*, 2010 Seventh International Conference, 804–809

Eva, F., Angelika H., & Beeck, R. O. D. (2007). Literature Review: The Human-Machine Interface As An Emerging Risk.

Fortino, G., Guerrieri, A., Russo, W. (2012). Agent-oriented smart objects development. In: *Computer Supported Cooperative Work in Design (CSCWD)*, 2012 IEEE 16th International Conference on, pp. 907–912.

GhaffarianHoseini, A., Dahlan, N. D., Berardi, U., GhaffarianHoseini, A., Makaremi, N., & GhaffarianHoseini, M. (2013). Sustainable energy performances of green buildings: A review of current theories, implementations and challenges. *Renewable and Sustainable Energy Reviews*, 25, 1-17.

Han, J., & Lim, J. H. (2010). Smart home energy management system using IEEE 802.15.4 and ZigBee. *IEEE Transactions on Consumer Electronics*, 56(3); 1403-1410. <https://doi.org/10.1109/TCE.2010.5606278>

Kumar, A., Srivastava, S., & Chaudhary, P. (2021). Energy-efficient smart lighting control using hand gestures. *Journal of Ambient Intelligence and Humanized Computing*, 12(3); 3127-3141.

Kim, J. H., Kim, J. H., Lee, H. W., & Park, K. R. (2014). Finger recognition-based human– computer interface using infrared illumination. *IEEE Transactions on Consumer Electronics*, 60(1), 164-171. <https://doi.org/10.1109/TCE.2014.6780933>

Kim, J. H., Lee, S., & Kim, D. H. (2017). IoT-based smart lighting system for improving efficiency of building energy. *Energy Procedia*, 111, 792-801.

JOURNAL OF INNOVATIONS IN SCIENCE EDUCATION (JISE)
Vol. 1(1); 2025

Li, H., & Sun, J. (2020). Gesture-based smart lighting control system using neural networks. *IEEE Transactions on Consumer Electronics*, 66(1); 56-65.

Li, Z., & Sun, S. (2020). Gesture recognition for smart home applications. *IEEE Access*, 8, 56044-56054.

Mitra, S., & Acharya, T. (2007). Gesture recognition: A survey. *IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews)*, 37(3), 311-324. <https://doi.org/10.1109/TSMCC.2007.893280>

Mühlhäuser, M. (2008). Smart products: An introduction. In *Constructing Ambient Intelligence*, 158-164. Springer. https://doi.org/10.1007/978-3-540-85379-4_14

Ouyang, W., & Yuan, J. (2016). Deep learning for human activity recognition in videos. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, 609-618.

Pisharady, P. K., & Saerbeck, M. (2015). Recent methods and databases in vision-based hand gesture recognition: A review. *Computer Vision and Image Understanding*, 141, 152-165.
<https://doi.org/10.1016/j.cviu.2015.08.004>

Rautaray, S. S., & Agrawal, A. (2015). Vision-based hand gesture recognition for human computer interaction: A survey. *Artificial Intelligence Review*, 43(1); 1-54.

Richter, P., Toledo-Ayala, M., Soto-Zarazúa, G. M., Rivas-Araiza, E.A., A Survey of Hybridisation Methods of GNSS and Wireless LAN Based Positioning System. *J. Ambient Intell. Smart Environ.* 6(6):723–738, 2014.

Riener, A., Ferscha, A., Frey, J., et al. (2020). Standardization of in-car gesture interaction. *IEEE Pervasive Computing*, 19(1); 8-15.

Risteska Stojkoska, B. L., & Trivodaliev, K. V. (2017). A review of Internet of Things for smart home: Challenges and solutions. *Journal of Cleaner Production*, 140, 1454-1464. <https://doi.org/10.1016/j.jclepro.2016.10.006>

Sathiyaranayanan, M., & Rajini, V. (2017). Gesture-based home automation system using depth sensing. *International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering*, 6(7), 5747-5754.

Soutschek, S., Maier, P., & Samarin, N. (2020). Hand gesture recognition in operating rooms: A systematic review. *Journal of Medical Systems*, 44(2), 36.

JOURNAL OF INNOVATIONS IN SCIENCE EDUCATION (JISE)
Vol. 1(1); 2025

Sicari, S., Rizzardi, A., Grieco, L. A., & Coen-Porisini, A. (2015). Security, privacy and trust in Internet of Things: The road ahead. *Computer Networks*, 76, 146-164.

Wilson, C., Hargreaves, T., & Hauxwell-Baldwin, R. (2017). Benefits and risks of smart home technologies. *Energy Policy*, 103, 72-83.

Vigneshwaran, P., Anand, N., & Kumar, R. (2019). Smart home automation system using gesture control. *International Journal of Innovative Technology and Exploring Engineering*, 8(9); 3335-3338.

Zeng, E., Mare, S., & Roesner, F. (2017). End user security and privacy concerns with smart homes. Proceedings of the Thirteenth USENIX Conference on Usable Privacy and Security, 65-80. <https://doi.org/10.5555/3235305.3235311>

Wu, Y., Huang, T. S., & Liu, Q. (2016). An adaptive self-organizing map for human gesture recognition in an intelligent environment. *IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)*, 41(1); 144-153. <https://doi.org/10.1109/TSMCB.2010.2043124>

Yang, R., Newman, M. W., & Forlizzi, J. (2014). Making sustainability sustainable: Challenges in the design of eco-interaction technologies. In CHI 2014 - Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.

Zeng, E., Mare, S., & Roesner, F. (2017). End user security and privacy concerns with smart homes. In Proceedings of the Thirteenth USENIX Conference on Usable Privacy and Security, 65-80.